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Abstract

Recent studies have shown the advantages
of evaluating NLG systems using pairwise
comparisons as opposed to direct assessment.
Given k systems, a naive approach for identi-
fying the top-ranked system would be to uni-
formly obtain pairwise comparisons from all(
k
2

)
pairs of systems. However, this can be

very expensive as the number of human anno-
tations required would grow quadratically with
k. In this work, we introduce Active Evalu-
ation, a framework to efficiently identify the
top-ranked system by actively choosing sys-
tem pairs for comparison using dueling ban-
dit algorithms. We perform extensive experi-
ments with 13 dueling bandits algorithms on
13 NLG evaluation datasets spanning 5 tasks
and show that the number of human annota-
tions can be reduced by 80%. To further reduce
the number of human annotations, we propose
model-based dueling bandit algorithms which
combine automatic evaluation metrics with hu-
man evaluations. Specifically, we eliminate
sub-optimal systems even before the human
annotation process and perform human evalu-
ations only on test examples where the auto-
matic metric is highly uncertain. This reduces
the number of human annotations required fur-
ther by 89%. In effect, we show that identi-
fying the top-ranked system requires only a
few hundred human annotations, which grow
linearly with k. Lastly, we provide practical
recommendations and best practices to iden-
tify the top-ranked system efficiently. Our code
has been made publicly available at https:
//github.com/akashkm99/duelnlg

1 Introduction

In the last few years, the field of NLG has made
rapid progress with the advent of large-scale mod-
els trained on massive amounts of data (Vaswani
et al., 2017; Xue et al., 2020; Liu et al., 2020;
Brown et al., 2020). However, evaluation of NLG
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systems continues to be a challenge. On the one
hand, we have automatic evaluation metrics which
are easy to compute but unreliable. In particular,
many studies have shown that they do not correlate
well with human judgments (Novikova et al., 2017;
Elliott and Keller, 2014; Sai et al., 2019, 2020a,b).
On the other hand, we have human evaluations,
which are relatively more reliable but tedious, ex-
pensive, and time-consuming. Further, recent stud-
ies have highlighted some limitations of human
evaluations that involve direct assessment on an
absolute scale, e.g., Likert scale. Specifically, hu-
man evaluations using direct assessment have been
shown to suffer from annotator bias, high vari-
ance and sequence effects where the annotation of
one item is influenced by preceding items (Kulikov
et al., 2019; Sudoh et al., 2021; Liang et al., 2020;
See et al., 2019; Mathur et al., 2017).

In this work, we focus on reducing the cost and
time required for human evaluations while not com-
promising on reliability. We take motivation from
studies which show that selecting the better of two
options is much easier for human annotators than
providing an absolute score, which requires an-
notators to maintain a consistent standard across
samples (Kendall, 1948; Simpson and Gurevych,
2018). In particular, recent works show that rank-
ing NLG systems using pairwise comparisons is a
more reliable alternative than using direct assess-
ment (See et al., 2019; Li et al., 2019; Sedoc et al.,
2019; Dhingra et al., 2019). While this is promis-
ing, a naive approach for identifying the top-ranked
system from a set of k systems using uniform ex-
ploration is prohibitively expensive. Specifically,
uniform exploration obtains an equal number of
annotations for all the

(
k
2

)
system pairs; as a result,

the required human annotations grows as O(k2).
To reduce the number of pairwise annotations,

we introduce Active Evaluation, a framework to
efficiently identify the top-ranked NLG system.
Our Active Evaluation framework consists of a

https://github.com/akashkm99/duelnlg
https://github.com/akashkm99/duelnlg


learner that selects a pair of systems to compare
at each time step. The learner, then, receives a
feedback signal indicating the (human) preference
between the selected systems on one input con-
text, randomly sampled from the test dataset. The
learner’s objective is to reliably compute the top-
ranked system with as few human annotations as
possible. We adopt algorithms from the stochastic
dueling bandits literature (Bengs et al., 2021) to
decide which pair of NLG systems to compare at
each time step. To check if existing dueling bandits
algorithms can indeed provide reliable top-rank es-
timates with minimal annotations, we evaluate 13
such algorithms on 13 NLG evaluation datasets
spanning five tasks viz., machine translation, sum-
marization, data-to-text generation, paraphrase gen-
eration, and grammatical error correction. We show
that the best performing dueling bandit algorithm
can reduce the number of human annotations by
80% when compared to uniform exploration.

To further reduce human annotations, we lever-
age automatic evaluation metrics in our Active
Evaluation framework. We utilize existing au-
tomatic metrics such as BLEU (Papineni et al.,
2002), BertScore (Zhang et al., 2020), etc for pair-
wise evaluations by converting the direct evaluation
scores into preference probabilities using pairwise
probability models. We also develop trained pair-
wise metrics that directly predict the comparison
outcome given pairs of generated texts and con-
text or reference as input. To incorporate such
evaluation metrics in our Active Evaluation frame-
work, we propose three model-based dueling ban-
dits algorithms, viz., (i) Random Mixing: human
annotations and evaluation metric predictions are
randomly mixed, (ii) Uncertainty-aware selection:
human annotations are obtained only when the pre-
dictions from the evaluation metric is highly un-
certain, (iii) UCB Elimination: poorly perform-
ing NLG systems are eliminated using an Upper
Confidence Bound (UCB) on the evaluation metric
scores. Through our experiments, we show that
the number of human annotations can be further
reduced by 89% on average (this reduction is over
and above the 80% reduction that we got earlier).
In effect, we show that given k systems, we can
find the top-ranked NLG system efficiently with
just a few hundred comparisons that vary as O(k).
Lastly, we provide practical recommendations to ef-
ficiently identify the top-ranked NLG system based
on our empirical study on various design choices

and hyperparameters.

2 Active Evaluation Framework

We introduce the problem and our Active Evalua-
tion setup in section 2.1. Later in section 2.2, we
describe the different approaches to decide which
pairs of NLG systems to compare at each time step.
Finally, in section 2.3, we formalize the notion of
top-ranked system.

2.1 Problem Formulation and Setup
We consider the problem of finding the top-ranked
NLG system from a given set of k systems, de-
noted by S = {1, 2, . . . , k}. Our Active Evalua-
tion framework consist of a learner which at each
time step t, chooses a pair of systems s(t)1 , s

(t)
2 ∈ S

for comparison. Then, we ask human annotators
to compare the outputs of the chosen systems on
a randomly sampled input context and provide the
comparison outcome as feedback to the learner.
Specifically, we first sample an input context X(t)

from the test dataset and obtain the generated texts
Y

(t)
1 , Y

(t)
2 from the chosen systems s

(t)
1 , s

(t)
2 . We

then display the generated texts Y
(t)
1 , Y

(t)
2 along

with the context X(t) to human annotators and ob-
tain a comparison outcome w(t) = 1, 0, or 0.5

denoting whether Y (t)
1 is of better, worse, or equal

(tie) quality as Y (t)
2 . Note that the feedback w(t) in-

dicates the preference on only one input sample and
not the entire test dataset. The overall framework
is depicted in figure 1. The learner’s objective is
to find the top-ranked system with as few pairwise
comparisons as possible.

2.2 Choosing System Pairs for Comparison
The learner should decide the pair of systems
(s

(t)
1 , s

(t)
2 ) to compare at each time step t. The naive

approach is to uniformly explore all the
(
k
2

)
system

pairs. Specifically, the probability of selecting a
pair (i, j), i ̸= j at time t is given by

Puniform((s
(t)
1 , s

(t)
2 ) = (i, j)) =

1(
k
2

)
However, as we show in our experiments, the num-
ber of human annotations required to find the top-
ranked system by this approach is very expensive
and grows quadratically with the number of sys-
tems since we equally explore all

(
k
2

)
pairs. To

reduce the number of annotations, we use dueling
bandit algorithms to actively choose pairs of sys-
tems to compare based on the history of previous



Figure 1: Our Active Evaluation framework consisting
of a learner that chooses a pair of systems to compare
at each time step. The learner receives feedback from
either human annotators or the automatic metric.

observations. We provide an overview of 13 duel-
ing bandits algorithms proposed in the literature in
appendix B. We refer the readers to (Bengs et al.,
2021) for a complete survey.

2.3 Identifying the top-ranked system

We now formalize the notion of the top-ranked
system. Let pij denote the preference probability
of system i over system j i.e. the probability that
a generated text from system i is preferred over
system j in the test dataset. We say that a system i
"beats" system j if pij > 1

2 . In other words, system
i beats system j if the probability of winning in a
pairwise comparison is larger for i than it is for j.
We define the top-ranked system i∗ as the one that
beats all other systems, i.e. pi∗j > 1

2 ,∀j ∈ S − i∗.

3 Pairwise Probability Models

Our Active Evaluation framework, which we de-
scribed in the previous section, completely relied
on human annotators to compare pairs of generated
texts (Y1, Y2) to provide the preference feedback
w. We can further reduce the number of required
human annotations by estimating the human prefer-
ence feedback using automatic evaluation metrics.
However, most existing evaluation metrics are de-
signed for direct assessment and not directly suit-
able for pairwise evaluations. In this section, we de-

scribe three pairwise probability models to convert
direct evaluation scores into pairwise preference
probabilities. Let f(Y ) denote the score provided
by a direct assessment metric f to a generated text
Y (The dependence of f on the reference/context is
omitted for brevity). The pairwise preference prob-
ability p̂(Y1 ≻ Y2) between any two hypotheses Y1
and Y2 can be modeled in 3 different ways:

• Linear:

p̂(Y1 ≻ Y2) =
1

2
+ (f(Y1)− f(Y2))

• Bradley-Terry-Luce (BTL) (Bradley and
Terry, 1952; Luce, 1979):

p̂(Y1 ≻ Y2) =
f(Y1)

f(Y1) + f(Y2)

• BTL-logistic::

As detailed in appendix C.2, we appropriately
preprocess the scores f(Y ) to ensure that prefer-
ence probability lies between 0 and 1. We can now
predict the comparison outcome w by thresholding
the preference probability at two thresholds τ1 and
τ2(≥ τ1) to incorporate ties i.e.:

ŵ =


1, if p̂(Y1 ≻ Y2) > τ2

0, if p̂(Y1 ≻ Y2) < τ1

0.5, Otherwise

We choose τ1 and τ2 using grid search on the vali-
dation set. Refer appendix C.2 for more details.

4 Model-based Dueling Bandits

In the previous section, we discussed pairwise prob-
ability models to obtain the estimated preference
probability p̂(Y1 ≻ Y2) and the comparison out-
come ŵ using scores assigned by direct assessment
metrics. We now propose three model-based du-
eling bandit algorithms wherein we combine such
predictions from evaluation metrics with human
annotations in the Active Evaluation framework.

4.1 Random Mixing
Here, we randomly provide either the real (human)
or the evaluation metric predicted feedback to the
learner. Specifically, at any time t, we use the pre-
dicted comparison outcome ŵ(t) as the feedback
with probability pm and use human annotations
w(t) as feedback with probability 1− pm. The hy-
perparameter pm controls the ratio of estimated and
real feedback given to the learner. As with other
hyperparameters, we tune pm on the validation set.



4.2 Uncertainty-aware Selection
In this algorithm, we estimate uncertainty in the
evaluation metric predictions and decide to ask for
human annotations only when the evaluation met-
ric is highly uncertain. We specifically focus on
trainable neural evaluation metrics such as Bleurt
(Sellam et al., 2020) where we estimate the predic-
tion uncertainty using recent advances in Bayesian
deep learning. Let p̂(Y1 ≻ Y2|θ) denote the prefer-
ence probability modelled by a neural evaluation
metric with parameters θ. Given a training dataset
Dtr, Bayesian inference involves computing the
posterior distribution p(θ|Dtr) and marginalization
over the parameters θ:

p̂(Y1 ≻ Y2|Dtr) =

∫
θ
p̂(Y1 ≻ Y2|θ)p̂(θ|Dtr)dθ

However, computing the true posterior and aver-
aging over all possible parameters is intractable in
practice. Hence, several approximations have been
proposed in variational inference such as finding a
surrogate distribution qϕ(θ) for the true posterior.
Gal and Ghahramani (2016) have shown that we
can use the Dropout distribution (Srivastava et al.,
2014) as the approximate posterior qϕ(θ). Specifi-
cally, we can perform approximate Bayesian infer-
ence by applying Dropout during test time. Hence,
the posterior can now be approximated with Monte-
carlo samples as follows:

p̂(Y1 ≻ Y2|Dtr) ≈ 1

L

L∑
l=1

p̂(Y1 ≻ Y2|θl)

where {θl}Ll=1 are L samples from the Dropout
distribution qϕ(θ) (i.e. we apply Dropout L times
independently during testing). We now discuss two
different Bayesian uncertainty measures:

BALD: The Bayesian Active Learning by Dis-
agreement (BALD) (Houlsby et al., 2011) is de-
fined as the mutual information between the model
predictions and the model posterior. Let pl =
p̂(Y1 ≻ Y2|θl), where θl ∼ qϕ(θ), be the evalua-
tion metric prediction using the lth sample θl from
the Dropout distribution. Also, let p̄ = 1

L

∑L
l=1 pl

be the mean prediction. As shown in (Gal et al.,
2017), we can approximate the BALD measure
using samples from the Dropout distribution as:

Î = H(p̄)− 1

L

L∑
l=1

H(pl)

where H is the binary cross entropy function. The
BALD uncertainty score is essentially the differ-
ence in entropy of the mean prediction p̄ and the av-
erage entropy of the individual predictions {pl}Ll=1.
Hence, the BALD uncertainty score is high when
the metric’s mean prediction is uncertain (high en-
tropy) but the individual predictions are highly con-
fident (low entropy), i.e., when the metric produces
disagreeing predictions with high confidence.

STD: We also adopt the standard deviation of the
preference probability taken over the posterior dis-
tribution as a measure of uncertainty:

σ =
√

Varθ∼p̂(θ|Dtr)(p̂(Y1 ≻ Y2|θ))

Similar to BALD, we can approximate the above
measure using the empirical standard deviation of
samples drawn from the dropout distribution.

Our proposed algorithm asks for human anno-
tations only if the uncertainty measure (BALD or
STD) is above a particular threshold.

4.3 UCB Elimination
The key idea here is to eliminate a set of "poorly
performing" NLG systems using the automatic met-
ric and perform human evaluations with the remain-
ing set of systems. To eliminate sub-optimal sys-
tems, we first need to quantify a performance mea-
sure for the systems. We use the Copeland score
(Zoghi et al., 2015) which is defined as the normal-
ized total number of pairwise wins for a system:
Ci = 1

k−1

∑
j ̸=i 1(pij > 1

2). Copeland score is
the highest for the top-ranked system with a value
of 1 and it is less than 1 for all other systems. To
estimate the Copeland score, we first predict the
pairwise preference probability between any two
systems i and j as follows:

p̂ij =
1

N

∑
Y1,Y2∈Dij

p̂(Y1 ≻ Y2|θ)

where Dij is the test dataset consisting of generated
texts from systems i and j, N is the total number
of test examples, θ is the learned model parame-
ters. We can now estimate the Copeland score Ĉi

using the estimated preference p̂ij and eliminate
all systems with Copeland scores below a thresh-
old. However, a major problem with this approach
is that evaluation metrics are often inaccurate and
we could wrongly eliminate the true top-ranked
system without performing any human evaluations.
For example, consider the example where i∗ is the



top-ranked system with pi∗j > 0.51 ,∀j ∈ S − i.
If several of the predicted probabilities p̂i∗j are less
than 0.5, our top-ranked system i∗ will receive a
low estimated Copeland score and will be incor-
rectly eliminated. To overcome this problem, we
define an Upper Confidence Bound (UCB) on the
preference probability using uncertainty estimates
that we described in 4.2. Specifically, the upper
confidence bound ûij is given by ûij = p̂ij + ασ̂ij
where α is a hyperparameter that controls the size
of the confidence region and σ̂2

ij is the estimated
variance given by:

σ̂2
ij =

1

N2

∑
Y1,Y2∈Dij

Varθ∼qϕ(θ)p̂(Y1 ≻ Y2|θ)

where qϕ(θ) is the Dropout distribution. Using
the upper confidence estimates ûij , we now define
the optimistic Copeland score for a system i as
Ĉu
i = 1

K−1

∑
j ̸=i 1(ûij > 1

2). Here, we consider
a system i to beat another system j (ûij > 0.5) if
either the estimated preference is high (p̂ij is high)
or if there is an high uncertainty in the estimation
(σ̂ij is high). In UCB Elimination, we eliminate
a system only if the optimistic Copeland score is
below a threshold.

5 Experimental Setup

In this section, we describe the (i) NLG tasks and
datasets used in our experiments, (ii) automatic
evaluation metrics used in our model-based algo-
rithms, and (iii) annotation complexity measure
used for comparing dueling bandit algorithms.

5.1 Tasks & Datasets
We use a total of 13 datasets spanning 5 tasks in
our experiments which are summarized in table 1.
Machine Translation (MT): We use 7 human
evaluation datasets collected from the WMT news
translation tasks (Bojar et al., 2015, 2016) viz.
fin→eng, rus→eng, deu→eng language pairs in
WMT 2015 and tur→eng, ron→eng, cze→eng,
deu→eng language pairs in WMT 2016.
Grammatical Error Correction (GEC): We uti-
lize two human evaluation datasets collected by
(Napoles et al., 2019) where the source texts are
from (i) student essays (FCE), and (ii) formal arti-
cles in Wikipedia (Wiki). We also use another GEC
dataset collected by (Napoles et al., 2015a) from
the CoNLL-2014 Shared Task (Ng et al., 2014).
Data-to-Text Generation: We use the human eval-
uation data from the E2E NLG Challenge (Dusek

Task Dataset # Systems
# Human

Annotations

Machine
Translation

WMT15 fin→eng 14 31577
WMT15 rus→eng 13 44539
WMT15 deu→eng 13 40535
WMT16 tur→eng 9 10188
WMT16 ron→eng 7 15822
WMT16 cze→eng 12 125788
WMT16 deu→eng 10 20937

Grammatical
Error
Correction

Grammarly (FCE) 7 20328
Grammarly (Wiki) 7 20832
CoNLL-2014 Shared Task 13 16209

Data-to-Text E2E NLG Challenge 16 17089
Paraphrase ParaBank 28 151148
Summarization TLDR OpenAI 11 4809

Table 1: Description of tasks and datasets with the num-
ber of NLG systems and pairwise human annotations

et al., 2020). The task here is to generate natural
language utterance from dialogue acts.
Paraphrase Generation: We use human evalua-
tions of model generated English paraphrases re-
leased with the ParaBank dataset (Hu et al., 2019).
Summarization: We make use of the human eval-
uations (Stiennon et al., 2020) of GPT3-like trans-
formers on the TL;DR dataset (Völske et al., 2017).
We provide further details including preprocessing

steps and downloadable links in appendix A.1.

5.2 Automatic NLG Evaluation Metrics

We can predict the comparison outcome w using
two approaches. First, we can use pairwise proba-
bility models with existing direct assessment met-
rics as discussed in section 3. Alternatively, we
can train evaluation metrics to directly predict the
comparison outcome given pairs of generated texts
and context/reference as input. We discuss both
these approaches below:
Direct Assessment Metrics: We experiment with
a total of 10 direct assessment metrics viz. chrF
(Popovic, 2015), BLEU-4 (Papineni et al., 2002),
ROUGE-L (Lin, 2004), Embedding Average (Wi-
eting et al., 2016), Vector Extrema (Forgues et al.,
2014), Greedy Matching (Rus and Lintean, 2012),
Laser (Artetxe and Schwenk, 2019), BertScore
(Zhang et al., 2020), MoverScore (Zhao et al.,
2019) and Bleurt (Sellam et al., 2020). We mention
the implementation details in appendix A.2.
Pairwise Evaluation Metrics: We finetune the
pretrained Electra-base transformer model (Clark
et al., 2020) to directly predict the comparison out-
come w. We curate task-specific human evalua-
tion datasets consisting of tuples of the form (con-
text/reference, hypothesis 1, hypothesis 2, label) for
finetuning. Due to space constraints, we mention



Algorithm
WMT 2016 WMT 2015 Grammarly CoNLL

’14 Task
E2E
NLG

Para-
Bank

TL;
DRtur-eng ron-eng cze-eng deu-eng fin-eng rus-eng deu-eng FCE Wiki

Uniform 19479 24647 10262 3032 2837 12265 17795 8115 34443 61369 65739 825211 5893
SAVAGE 10289 18016 6639 2393 2675 12806 12115 5767 22959 39208 41493 255208 4733
DTS 10089 9214 8618 4654 4850 13317 16473 4355 11530 18199 19940 170467 1354
CCB 7017 11267 5389 2884 4092 11548 10905 4386 10020 21392 16960 87138 2518
Knockout 3415 7889 4723 3444 5104 5809 5956 3134 3777 8055 7708 17418 4953
RUCB 3125 5697 3329 1636 1655 4536 6222 2732 5617 19024 10924 41149 1647
RCS 2442 3924 3370 1537 2662 3867 5296 1816 4606 12678 7263 34709 1903
RMED 2028 5113 1612 864 1707 1929 4047 2093 5647 9364 3753 24132 1162

Table 2: Annotation complexity of the top 7 best performing dueling bandit algorithms along with the uniform
exploration algorithm on 13 datasets spanning 5 NLG tasks

details on the datasets and finetuning in appendix
A.3 and A.4. For the summarization task alone, we
couldn’t find any pairwise human judgment dataset
sufficient for finetuning the Electra model.

5.3 Annotation Complexity Measure
To evaluate the performance of dueling bandit al-
gorithms, we define annotation complexity as the
minimum number of human annotations needed
by an algorithm to identify the top-ranked NLG
system with high confidence. Let i∗ be the actual
top-ranked system, and î∗(n) denote the estimated
winner by the algorithm after n human annotations,
then annotation complexity is defined as:

minn′ : ∀n ≥ n′, P (î∗(n) = i∗) > 1− δacc

where δacc is the allowable failure probability i.e.
the learner can make a mistake with at most δacc
probability. To compute the annotation complexity,
we run each dueling bandit algorithm with 200 dif-
ferent random seeds and find the minimum number
of human annotations after which the algorithm
correctly returns the top-ranked NLG system in at
least 190/200 runs (we set δacc = 0.05).

6 Results & Discussion

We discuss the performance of dueling bandits al-
gorithms in 6.1, automatic metrics in 6.2 and our
proposed model-based algorithms in 6.3. Lastly in
6.4, we analyze the variation of annotation com-
plexity with the number of NLG system.

6.1 Analysis of Dueling Bandit Algorithms
We report the annotation complexity of the top 7
dueling bandit algorithms along with uniform ex-
ploration on 13 datasets in table 2. We observe
that the annotation complexity of uniform explo-
ration is consistently high across all 13 datasets. In
particular, the required human annotations become
prohibitively expensive when the number of NLG
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Figure 2: Top-rank prediction accuracy v/s number of
human annotations used on WMT 16 tur-eng dataset

systems is high, e.g. E2E NLG (16 systems) and
ParaBank (28 systems) datasets. On the other hand,
dueling bandit algorithms such as RUCB (Zoghi
et al., 2014b), RCS (Zoghi et al., 2014a), RMED
(Komiyama et al., 2015) are able to effectively iden-
tify the top-ranked system with much fewer annota-
tions. In particular, RMED performs the best with
a reduction of 80.01% in human annotations com-
pared to uniform exploration. We also examine an
alternative approach to assess the performance of
dueling bandit algorithms. Here, we fix the number
of human annotations (fixed annotation budget) and
compute the accuracy in predicting the top-ranked
system. As we show in figure 2, RMED achieves
the highest top-rank prediction accuracy for any
given number of human annotations. We provide
the complete results in appendix F.2.

6.2 Performance of Evaluation Metrics

Before we utilize automatic evaluation metrics us-
ing our proposed model-based algorithms, we ana-
lyze the effectiveness of these metrics for pairwise
NLG evaluations. In table 3, we report the sentence-
level accuracy in predicting the comparison out-
come w using direct assessment metrics with the
Linear probability model (as discussed in section
3) along with our trained Electra metric. Across
the tasks, we observe that metrics that utilize con-



Metric
WMT
(Avg.)

Gramm.
(Avg.)

CoNLL
’14 Task

E2E
NLG

Para-
Bank

TL;
DR

Chrf 62.6 75.7 78.4 47.4 66.1 34.2
Bleu 41.5 73.2 78.9 45.0 63.8 42.8
Rouge-L 60.7 73.5 78.0 44.6 64.3 43.3
Embed. Avg. 56.5 70.1 76.0 49.8 64.9 38.2
Greedy Match. 59.5 68.1 77.7 46.5 64.7 43.1
Vector Extr. 59.4 66.0 76.3 44.9 63.7 47.4
BertScore 65.9 77.4 82.0 45.9 68.1 44.5
Laser 65.3 75.1 78.0 47.2 67.0 35.4
MoverScore 66.1 74.7 80.6 50.1 68.0 40.7
Bleurt 68.2 77.1 81.5 48.1 67.7 42.5
Electra (Ours) 65.7 74.0 81.6 54.3 81.7 -

Table 3: Sentence-level accuracy of direct assessment
metrics with linear probability model and our trained
Electra metric in predicting the comparison outcome
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Figure 3: Annotation complexity of Random Mixing
with RMED using various automatic evaluation metrics

textualized word embeddings, such as BertScore,
perform much better than n-gram and static word
embedding-based metrics. In MT, we observe that
Bleurt, specifically finetuned on WMT human judg-
ment data, performs the best. In Data-to-Text and
Paraphrase generation, our trained Electra metric
finetuned on task-specific data significantly outper-
forms the existing metrics. Interestingly, on the
summarization task, all the existing metrics per-
form much worse than random predictions i.e. they
do not add any useful value in evaluation. Hence,
we exclude the TLDR dataset from our analysis
on model-based algorithms. Finally, as we show
in appendix F.3, we observed that the performance
is largely similar across all the three probability
models: Linear, BTL, and BTL-logistic.

6.3 Analysis of Model-based Algorithms

We use our proposed model-based algorithms and
incorporate the two best-performing evaluation
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Figure 4: Annotation complexity of (model-free) uni-
form exploration and dueling bandit algorithms v/s the
number of NLG systems on the ParaBank dataset

metrics, viz., Bleurt and Electra with the best per-
forming dueling bandit algorithm, viz., RMED.
We compare the annotation complexity of various
model-based algorithms in table 4. We observe
that the Random Mixing algorithm with Bleurt and
Electra reduces annotation complexity by 70.43%
and 73.15%, respectively, when compared to the
standard (model-free) RMED algorithm (row 1).
Our Uncertainty-aware selection algorithm with
the BALD measure further reduces the annotation
complexity by around 37% (compared with Ran-
dom Mixing). We notice that our UCB Elimination
algorithm also provides significant improvements
over standard RMED. Since UCB Elimination is
complementary to Uncertainty-aware selection, we
apply both these algorithms together and observe
the lowest annotation complexity with a reduction
of 89.54% using Electra and 84.00% using Bleurt
over standard RMED. Lastly, in figure 3, we an-
alyze the effect of using other evaluation metrics
such as BLEU, BertScore, etc., in Random Mix-
ing. Interestingly, we notice that using metrics
such as BLEU, which have low accuracy values,
results in a higher annotation complexity than stan-
dard (model-free) RMED in some datasets. That
is, we may even require a greater number of hu-
man annotations to over-compensate for the inaccu-
rate predictions from metrics like BLEU. However,
with Laser, MoverScore, and BertScore, we ob-
serve significant reductions in annotation complex-
ity. Please refer appendix F.4 for further results.

6.4 Effect of Number of NLG systems

We analyze how annotation complexity varies with
the number of NLG systems. Specifically, we chose
a subset of k systems out of the total 28 systems in
the ParaBank dataset and computed the annotation
complexity among these k systems. As shown in
figure 4, the annotation complexity of uniform ex-



Model-based
Algorithm

Evaluation
Metric

WMT 2016 WMT 2015 Grammarly CoNLL
’14 Task

E2E
NLG

Para-
Banktur-eng ron-eng cze-eng deu-eng fin-eng rus-eng deu-eng FCE Wiki

None (Model free) None 2028 5113 1612 864 1707 1929 4047 2093 5647 9364 3753 24132

Random Mixing
Bleurt 237 1222 315 161 275 304 771 406 671 9584 1151 15874
Electra 728 3213 385 152 236 512 650 1529 237 3302 326 1044

Uncertainty-aware
Selection (STD)

Bleurt 103 1012 192 84 204 239 530 270 185 9356 1291 22876
Electra 978 7251 478 210 388 962 1259 477 234 4708 199 2137

Uncertainty-aware
Selection (BALD)

Bleurt 101 653 136 48 181 162 405 204 128 9356 1167 22619
Electra 737 1648 223 114 207 538 488 281 75 1557 67 858

UCB Eliminination
Bleurt 711 2684 1131 573 419 843 3556 967 1115 8382 2005 14098
Electra 264 649 1131 414 294 1126 3556 3970 1115 2943 1112 9870

Uncertainty
(BALD) + UCB Elim.

Bleurt 31 415 376 25 59 82 305 162 39 9995 256 4570
Electra 721 736 144 51 76 288 280 312 45 782 40 2247

Table 4: Annotation complexity of model-based algorithms when used with RMED and Bleurt/Electra metric.

ploration grows quadratically with k as it explores
all system pairs equally. However, for (model-free)
dueling bandit algorithms such as RMED, the an-
notation complexity is much lower and only varies
as O(k). As shown in appendix F.1, we observed
similar trends with model-based algorithms.

7 Practical Recommendations

We summarize the key insights from this study and
provide practical recommendations on efficiently
identifying the top-ranked NLG system.

1. Use RMED dueling bandit algorithm to ac-
tively choose system pairs for comparison.

2. If human evaluation datasets are available,
train a metric to predict the comparison out-
come directly. Otherwise, use Bleurt with any
of the Linear, BTL, BTL-logistic models.

3. Manually annotate a few examples from the
test dataset and evaluate the sentence-level
accuracy of the metric. If the performance is
poor (e.g., accuracy near the random baseline),
do not use model-based approaches, obtain
feedback only from human annotators.

4. If the metric is reasonably accurate, use UCB
Elimination with Uncertainty-aware Selection
(BALD). Tune the hyperparameters of these
algorithms, if possible. Otherwise, refer ap-
pendix D for best practices developed based
on analyzing the sensitivity of model-based
algorithms to hyperparameters.

5. We can reduce the annotation time if we use
multiple annotators in parallel. We observed
that dueling bandit algorithms, though origi-
nally proposed for sequential annotations, are
robust to asynchronous feedback from multi-
ple annotators (Refer appendix E for details).

8 Related Work

Several works (Bojar et al., 2014, 2015; Sakaguchi
et al., 2014, 2016) in Machine translation and
Grammatical Error Correction adopt the TrueSkill
algorithm (Herbrich et al., 2006), originally used
for ranking Xbox gamers, to efficiently rank NLG
systems from pairwise annotations. A recent work
(Sakaguchi and Durme, 2018) proposes an online
algorithm to rank NLG systems when we receive
pairwise preference feedback in the form of a con-
tinuous scalar with bounded support. The key dif-
ference in our work is that we focus on the problem
of identifying the top-rank system instead of rank-
ing all the systems. Experimental study of dueling
bandit algorithms have been limited to synthetic
simulations in a few works (Yue and Joachims,
2011; Urvoy et al., 2013). Most others (Zoghi et al.,
2014b,a; Komiyama et al., 2015; Zoghi et al., 2015;
Wu and Liu, 2016) focus on information retrieval
applications that involve evaluating search retrieval
algorithms (Radlinski et al., 2008). To the best of
our knowledge, ours is the first work to extensively
study the effectiveness of dueling bandit algorithms
for NLG evaluation.

9 Conclusion & Future work

In this work, we focused on the problem of identify-
ing the top-ranked NLG system with few pairwise
annotations. We formulated this problem in an Ac-
tive Evaluation framework and showed that dueling
bandit algorithms can reduce the number of human
annotations by 80%. We then proposed model-
based algorithms to combine automatic metrics
with human evaluations and showed that human an-
notations can be reduced further by 89%; thereby
requiring only a few hundred human annotations
to identify the top-ranked system. In future work,
we would like to extend our analysis to the general
problem of finding the top-k ranked systems.



Discussion on Ethics & Broader Impact

Evaluating Natural Language Generation (NLG)
models accurately and reliably with few human an-
notations is an important aspect of NLG research
and its real-world applications. Our work shows
that we can significantly reduce the number of hu-
man annotations required to find the top-ranked
NLG system with high confidence. We envision
that our work will benefit a wide range of appli-
cations such as translation systems, grammatical
checkers, etc., where practitioners can find the best
NLG model among a set of candidates more accu-
rately and with fewer human annotations. Despite
these improvements, there are still several chal-
lenges towards reliable NLG evaluation. For exam-
ple, our model-based approaches, which use auto-
matic metrics, may be subject to biases and other
undesirable mistakes, depending on the metric and
how they are trained in practice. Our approach may
be used to evaluate models that generate fake news,
toxic content, or other harmful applications, even
though it is not specifically designed for such cases.
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A Further Details on Experiments

A.1 Tasks & Datasets
In table 5, we report the dataset statistics along
with links to download the original datasets. We
now discuss the preprocessing steps:
Machine Translation: In WMT 2015 and 2016
tasks, human annotators were asked to rank five
system outputs (translated sentences) relative to
each other. As recommended by the organizers
(Bojar et al., 2014), we convert each of these rank-
ings into

(
5
2

)
pairwise comparisons of systems.

Grammatical Error Correction: The Grammarly
evaluation datasets follow the RankME (Novikova
et al., 2018) annotation style where annotators were
shown 8 outputs side by side for each input and
were asked to provide a numerical score to each of
them. We discarded one of the outputs out of the
8, which was human crafted, and used the remain-
ing 7 model-generated outputs. We then convert
these 7 scores into

(
7
2

)
pairwise comparisons of

systems. Human evaluations of the CoNLL-2014
Shared Task followed the same process as WMT
2015. Hence, we follow the same preprocessing
steps as WMT.
Data-to-Text Generation: The E2E NLG Chal-
lenge also follows the RankME annotation format.
We follow the same preprocessing steps as the
Grammarly datasets. Out of the total 21 systems,
we held out 5 systems to train the Electra model
and use the remaining 16 systems.
Paraphrase Generation: For ParaBank, we fol-
low the same preprocessing steps as the Grammarly
datasets. Out of the total 35 systems, we held out of
7 systems and only used the remaining 28 systems.
Summarization: We select 11 systems that have
human annotations between each pair of them.
These systems are GPT3-like models with varying
model sizes (3B, 6B, 12B) and training strategies.
We do not perform any additional preprocessing
here.

A.2 Direct Assessment Metrics:
Implementation Details

We use the nlg-eval library1 for the implementation
of BLEU-4, ROUGE-L, Embedding Average, Vec-
tor Extrema, and Greedy Matching. For chrF, Laser
and BertScore, we use the implementations from
the VizSeq library 2. We use the official implemen-
tation released by the original authors for Mover-

1https://github.com/Maluuba/nlg-eval
2https://github.com/facebookresearch/vizseq

https://doi.org/10.1145/2556195.2556256
https://doi.org/10.1145/2556195.2556256
http://proceedings.mlr.press/v32/zoghi14.html
http://proceedings.mlr.press/v32/zoghi14.html


Task Dataset # Systems
# Human

Annotations
Label Distrib.

(0-0.5-1)
Downloadable

Link

Machine
Translation

WMT15 fin-eng 14 31577 37%-26%-37%
Click hereWMT15 rus-eng 13 44539 36%-27%-37%

WMT15 deu-eng 13 40535 32%-36%-32%
WMT16 tur-eng 9 10188 28%-44%-28%

Click here
WMT16 ron-eng 7 15822 38%-24%-38%
WMT16 cze-eng 12 125788 38%-25%-37%
WMT16 deu-eng 10 20937 37%-26%-37%

Grammatical
Error
Correction

Grammarly (FCE) 7 20328 29%-40%-31%
Click here

Grammarly (Wiki) 7 20832 29%-40%-31%
CoNLL-2014 Shared Task 13 16209 23%-52%-25% Click here

Data-to-Text
Generation

E2E NLG Challenge 16 17089 24%-50%-26% Click here

Paraphrase
Generation

ParaBank 28 151148 44%-2%-54% Click here

Summarization TLDR OpenAI 11 4809 49%-0%-51% Click here

Table 5: Description of tasks and datasets with the number of NLG systems, number of pairwise human annotations,
label distribution and the downloadable links to the datasets before preprocessing

Score and Bleurt. Among these metrics, Bleurt
is the only trainable metric. We use the publicly
released Bleurt-base checkpoint trained on WMT
direct judgments data. As described in section 4.2,
we apply Dropout to the Bleurt model during test
time to estimate prediction uncertainty.

A.3 Finetuning Datasets
Here, we describe the task-specific datasets used
for finetuning the Electra model (pairwise evalu-
ation metric described in section 5.2). For MT,
we used human evaluations of WMT 2013 and
2014, consisting of a total of 650k examples. For
GEC, we curated a training dataset of 180k pairs
of texts and human preference using data released
by (Napoles et al., 2015b) and the development
set released by (Napoles et al., 2019). We utilize
11k examples from 5 held-out systems in the E2E
NLG Challenge (apart from the 16 systems used
for evaluations) for Data-to-Text generation. Lastly,
we use a dataset of 180k examples from 7 held-out
systems in the ParaBank dataset for paraphrase gen-
eration. We use 90%− 10% split for splitting the
dataset into train and validation sets. Note that
these datasets do not have any overlap with the
datasets used for evaluating dueling bandit algo-
rithms.

A.4 Finetuning Details
We use the pretrained Electra-base model (Clark
et al., 2020) with 110M parameters (12 layers and
12 attention heads) as our base model. We finetune
the model using ADAM optimizer with β1 = 0.9
and β2 = 0.99. We use a linear learning rate decay
with a maximum learning rate of 1e-5 and warm-up

for 10% of training. We use a batch size of 128
and finetune for four epochs. We finetune all the
models on Google Cloud TPU v3-8. To estimate
prediction, we apply Dropout to the Electra model
during test time as described in 4.2.

B Summary of Dueling Bandit
Algorithms

We now provide an overview of various dueling
bandit algorithms in the literature. We first intro-
duce a few additional notations and terminologies
in B.1. Later in B.2, we describe the various struc-
tural assumptions made by different dueling bandit
algorithms. Finally, in B.3, we summarize 13 duel-
ing bandit algorithms that we analyze in this work.

B.1 Notations and Terminologies

Let ∆ij = pij− 1
2 where pij is the preference prob-

ability of system i over j, as defined in section 2.3.
We call a system as the Copeland winner if it beats
more number of systems than any other system.
Mathematically, a Copeland winner i∗ is defined as
i∗ = argmaxi

∑k
j=1 1(∆ij > 0). A special case

of the Copeland winner is the Condorcet winner,
which is the system that beats all other systems. In
all our NLG tasks and datasets, we observed that
this special case holds true i.e. there exists a system
that beats all other k − 1 systems, and we define it
as the top-ranked system. Nevertheless, we men-
tion these two definitions to distinguish algorithms
that work for the general Copeland winner, even if
the Condorcet winner does not exist.

http://www.statmt.org/wmt15/translation-judgements.zip
http://data.statmt.org/wmt16/translation-task/wmt16-translation-judgements.zip
https://github.com/grammarly/GMEG/tree/master/data/test
https://github.com/cnap/gec-ranking/tree/master/data
https://github.com/tuetschek/e2e-eval/releases/download/v1.0.0/e2e-eval.zip
https://github.com/decompositional-semantics-initiative/ParaBank-Eval-Data
https://github.com/openai/summarize-from-feedback


B.2 Assumptions

All the dueling bandit algorithms that we analyze
in this work assume a stochastic feedback setup in
which the feedback is generated according to an
underlying (unknown) stationary probabilistic pro-
cess. Specifically, in our Active Evaluation frame-
work, this is equivalent to assuming that the anno-
tator preference is stationary over time and is given
by some fixed distribution pa(w|Y (t)

1 , Y
(t)
2 ). Fur-

ther, many dueling bandit algorithms make various
assumptions on the true pairwise preferences and
exploit these assumptions to derive theoretical guar-
antees (Bengs et al., 2021). In table 6, we describe
the various commonly used assumptions by duel-
ing bandit algorithms. For example, the stochastic
triangle inequality assumption (STI), described in
row 4 of table 6, assumes that the true preference
probabilities between systems obey the triangle in-
equality. We note here that one cannot verify the
validity of these assumptions apriori since we do
not have access to the true preferences.

B.3 Algorithms

In table 7, we describe the various dueling bandit
algorithms along with the assumptions (used to
provide theoretical guarantees) and the target
winner. We summarize these algorithms below:

IF: Interleaved Filtering (IF) (Yue et al., 2012) algo-
rithm consists of a sequential elimination strategy
where a currently selected system si is compared
against the rest of the active systems (not yet elimi-
nated). If the system sj beats a system si with high
confidence, then si is eliminated, and sj is com-
pared against all other active systems. Similarly, if
the system si beats sj with high confidence, then sj
is eliminated, and si is continued to be compared
against the remaining active systems. Under the
assumptions of TO, SST, and STI, the authors pro-
vide theoretical guarantees for the expected regret
achieved by IF.

BTM: Beat The Mean (BTM) (Yue and Joachims,
2011), similar to IF, is an elimination-based algo-
rithm that selects the system si with the fewest
comparisons and compares it with a randomly cho-
sen system from the set of active systems. Based
on the comparison outcome, a score and confidence
interval are assigned to the system si. BTM elimi-
nates a system as soon as there is another system
with a significantly higher score.

Knockout, Seq Elim, Single Elim: Knockout
(Falahatgar et al., 2017b), Sequential Elimination
(Falahatgar et al., 2017a), Single Elimination (Mo-
hajer et al., 2017) are all algorithms that proceed in
a knockout tournament fashion where the systems
are randomly paired, and the winner in each duel
will play the next round (losers are knocked out)
until the overall winner is determined. During a
duel, the algorithm repeatedly compares the two
systems to reliably determine the winner. The key
difference between the three algorithms is the as-
sumptions they use and how they determine the
number of comparisons required to identify the
winning system in a duel with high probability.
Plackett Luce: Plackett Luce Condorcet winner
identification algorithm (Szörényi et al., 2015) as-
sumes that the true rank distribution follows the
Placket-Luce model (Plackett, 1975). The algo-
rithm is based on a budgeted version of QuickSort.
The authors show that it achieves a worst-time an-
notation complexity of the order k log k under the
Placket-Luce assumption.
RUCB: Relative Upper Confidence Bound (RUCB)
(Zoghi et al., 2014b) is an adaptation of the well-
known UCB algorithm (Auer et al., 2002) to the
dueling bandit setup. Similar to UCB, RUCB se-
lects the first system s

(1)
t based on "optimistic" es-

timates of the pairwise preference probabilities i.e.
based on an upper confidence bound of preference
probabilities. The second system s

(2)
t is chosen to

be the one that is most likely to beat s(1)t .
RCS: Relative Confidence Sampling (RCS) (Zoghi
et al., 2014a) follows a Bayesian approach by main-
taining a posterior distribution over the preference
probabilities. At each time step t, the algorithm
samples preference probabilities from the posterior
and simulates a round-robin tournament among the
systems to determine the Condorcet winner. The
estimated Condorcet winner is chosen as the first
system s

(1)
t and second system s

(2)
t is chosen such

that it has the best chance of beating s
(1)
t .

RMED: Relative Minimum Empirical Divergence1
(RMED) algorithm (Komiyama et al., 2015) main-
tains an empirical estimate of the “likelihood” that
a system is the Condorcet winner. It then uses this
estimate to sample the first system s

(1)
t and then

selects the second system s
(2)
t that is most likely to

beat s(1)t .
SAVAGE: Sensitivity Analysis of VAriables for
Generic Exploration (SAVAGE) (Urvoy et al.,



Assumption Name Condition

Total Order (TO)
∃ a total order ≻ over S:
i ≻ j ⇐⇒ ∆ij > 0

Strong stochastic
transitivity (SST)

∆ij > 0,∆jk > 0 =⇒
∆ik ≥ max(∆ij ,∆jk)

Relaxed stochastic
transitivity (RST)

∃γ ≥ 1: ∆ij > 0,∆jk > 0
=⇒ γ∆ik ≥ max(∆ij ,∆jk)

Stochastic triangle
inequality (STI)

∆ij > 0,∆jk > 0 =⇒
∆ik ≤ ∆ij +∆jk

Condorcet winner (CW) ∃i∗: ∆i∗,j > 0, ∀j ∈ S − i∗

PL model
The underlying rank distribution
follows the Plackett-Luce (PL)
model (Plackett, 1975; Luce, 1979)

Table 6: Various assumptions made by dueling bandit
algorithms in the literature

Algorithm Assumptions Target
IF (Yue et al., 2012) TO+SST+STI Condorcet
BTM (Yue and Joachims, 2011) TO+RST+STI Condorcet
Seq-Elim. (Falahatgar et al., 2017a) SST Condorcet
Plackett Luce (Szörényi et al., 2015) PL model Condorcet
Knockout (Falahatgar et al., 2017b) SST+STI Condorcet
Single Elim.(Mohajer et al., 2017) TO Condorcet
RUCB (Zoghi et al., 2014b) CW Condorcet
RCS (Zoghi et al., 2014a) CW Condorcet
RMED (Komiyama et al., 2015) CW Condorcet
SAVAGE (Urvoy et al., 2013) - Copeland
CCB (Zoghi et al., 2015) - Copeland
DTS (Wu and Liu, 2016) - Copeland
DTS++ (Wu and Liu, 2016) - Copeland

Table 7: Summary of dueling bandits algorithms in the
literature along with their theoretical assumptions and
the target winner of the learner

2013) is a generic algorithm that can be adopted for
various ranking problems such as Copeland winner
identification. SAVAGE (Copeland) algorithm, at
each time step, randomly samples a pair of systems
from the set of active system pairs (not yet elimi-
nated) and updates the preference estimates. A sys-
tem pairs (si, sj) is eliminated if either (i) the result
of comparison between si and sj is already known
with high probability, or (ii) there exists some sys-
tem sk where the estimated Copeland score of sk
is significantly higher than si or sj .

CCB: Copeland Confidence Bound (CCB) (Zoghi
et al., 2015) is similar to the RUCB algorithm but
is designed to identify the Copeland Winner (a gen-
eralization of the Condorcet winner). The CCB al-
gorithm maintains optimistic preference estimates
and uses them to choose the first system s

(1)
t and

then selects the second system s
(2)
t that is likely

to discredit the hypothesis that s(1)t is indeed the
Copeland winner. The algorithm successively re-
moves all other systems that are highly unlikely to
be a Copeland winner.

DTS, DTS++: The Double Thompson Sampling
(DTS) algorithm (Wu and Liu, 2016) maintains
a posterior distribution over the pairwise prefer-
ence matrix, and selects the system pairs s(1)t , s

(2)
t

based on two independent samples from the poste-
rior distribution. The algorithm updates the poste-
rior distributions based on the comparison outcome
and eliminates systems that are unlikely to be the
Copeland winner. DTS++ is an improvement pro-
posed by the authors, which differs from DTS in
the way the algorithm breaks ties. Both have the
same theoretical guarantees, but DTS++ has been
empirically shown to achieve better performance
(in terms of regret minimization).

C Hyperparameters Details

We discuss the details of the hyperparameters and
the tuning procedure used for dueling bandit algo-
rithm in C.1, pairwise probability models in C.2
and our model-based algorithm in C.3. In all three
cases, we use the validation split of the finetuning
datasets described in A.3 as our validation dataset.
For example, the validation split of the finetuning
datasets for MT consists of 10% of the WMT 2013
and 2014 datasets. We use this dataset to tune the
hyperparameters for WMT 2015 and 2016 datasets.

C.1 Dueling Bandit Algorithms

For all algorithms other than Knockout and Single
Elimination, we use the hyperparameters recom-
mended by the original authors for all the datasets.
For example, in the RMED algorithm, described
in algorithm 1 of (Komiyama et al., 2015), we use
f(K) = 0.3K1.01 as suggested by the authors. For
the RCS algorithm, described in algorithm 1 of
(Zoghi et al., 2014a), we use α (exploratory con-
stant) = 0.501. For RUCB (algorithm 1 of (Zoghi
et al., 2014b)), we use α = 0.51. Similarly, for all
algorithms other than Knockout and Single Elimi-
nation, we use the recommended hyperparameters
mentioned in the original paper. For knockout and
Single Elimination, we found that the performance
was very sensitive to the hyperparameters. For
these two algorithms, we manually tuned the hy-
perparameters on the validation set. In Knockout,
algorithm 3 of (Falahatgar et al., 2017b), we use
ϵ = 0.2, δ = 0.05, γ = 1.0 for WMT’16 ron-eng
and TLDR OpenAI datasets. We use ϵ = 0.2, δ =
0.05, γ = 0.6 for ParaBank and Grammarly-Wiki
datasets and ϵ = 0.2, δ = 0.09, γ = 0.6 for all
other datasets. In Single Elimination, we use m



(number of pairwise comparisons per duel) = 1000
for WMT’16 ron-eng, E2E NLG, Grammarly-FCE,
m = 1500 for CoNLL’14 shared task and m = 500
for all other datasets.

C.2 Pairwise Probability Models

Let f̃(Y ) be the unnormalized score given an
automatic evaluation metric for an hypothesis Y .
We preprocess the score f̃(Y ) to obtain f(Y ) to en-
sure that the pairwise probability scores is always
a valid i.e. lies between 0 and 1. To preprocess the
scores, we use the validation dataset consisting
of tuples of the form {Y (i)

1 , Y
(i)
2 , w(i)}Ni=1 where

Y
(i)
1 , Y

(i)
2 represent the ith generated texts and

w(i) is the corresponding comparison outcome
provided by human annotators.

Linear: Let ∆i = |f̃(Y (i)
1 ) − f̃(Y

(i)
2 )| and

∆ = maxi∆i. We divide the unormalized f̃(Y )
scores by 2∆ i.e.

f(Y ) =
f̃(Y )

2∆

.
BTL: Let fm

i = max{f̃(Y (i)
1 ), f̃(Y

(i)
2 )}, fm =

maxi f
m
i . We now subtract the scores by fm to

ensure that the scores are non-negative i.e.

f(Y ) = f̃(Y )− fm

BTL-Logistic: BTL-Logistic model always pro-
vides a score between 0 and 1. However, we
found that dividing the scores by a temperature
co-efficient γ can provide better results i.e.

f(Y ) =
f̃(Y )

γ

We tune γ using grid search between 0.005 and
1 on the validation set to minimize the cross-
entropy loss between the preference probabilities
p̂(Y1 ≻ Y2) and the human labels w.

Thresholds: As described in section 3, we thresh-
old the preference probabilities p̂(Y1 ≻ Y2) at two
thresholds τ1 and τ2 to obtain the predicted com-
parison outcome ŵ. We perform a grid search by
varying τ1 from 0.4 to 0.5 and τ2 from 0.5 to 0.6
with a step size of 0.001. We choose the optimal
thresholds that maximize the prediction accuracy
on the validation dataset.

Dataset
Rand. Mix.

Uncertainty
(BALD)

UCB-Elim.

pm τBALD α τcop
WMT
(all 7 datasets)

0.8 0.025 0.5 0.8

Grammarly
(FCE & Wiki)

0.8 0.07 0.5 0.8

CoNLL’14 0.8 0.07 0.5 0.8
E2E NLG 0.9 0.035 0.5 0.8
ParaBank 0.95 0.15 0.5 0.8

Table 8: Tuned Hyperparameters of Model-based algo-
rithms when used with the Electra Metric

C.3 Model-based Algorithms

We manually tune the hyperparameters in our
model-based algorithms on the validation dataset.
For clarity, we first describe the hyperparameters in
the different model-based algorithms. In Random
Mixing, we need to choose the mixing probability
pm hyperparameter. In Uncertainty-aware Selec-
tion (BALD), we need to choose a threshold value
τBALD for the BALD score at which we decide to
ask for human annotations. For UCB elimination,
we should choose a threshold τcop for optimistic
Copeland scores and the α hyperparameter, which
controls the size of the confidence region. In ta-
ble 8 and 9, we report the tuned hyperparameter
values when using Electra and Bleurt (with the
Linear probability model) as the evaluation model.
Another hyperparameter is the number of Monte-
Carlo samples L to obtain from the Dropout distri-
bution as discussed in section 4.2. We set L = 20,
i.e. we independently apply dropout 20 times for
each test predictions.

D Effect of Hyperparameters in
Model-based Algorithms

D.1 Sensitivity to Hyperparameters

We study how hyperparameters in our proposed
model-based algorithms affect annotation complex-
ity. Recall that in Random Mixing, the mixing prob-
ability pm controls the ratio of real and model gen-
erated feedback given to the learner. In Uncertainty-
aware Selection (BALD), we obtain human anno-
tations when the BALD score is above a threshold
τBALD. Here, as well τBALD implicitly controls
the fraction of real and predicted feedback. In fig-
ure 5, we show the effect of pm in Random Mixing
with Bleurt and τBALD in Uncertainty-aware Selec-
tion with Bleurt. We observe that with increases in
both the hyperparameters, the annotation complex-



Dataset
Rand. Mix.

Uncertainty
(BALD)

UCB-Elim.

pm τBALD α τcop
WMT
(all 7 datasets)

0.8 0.005 0.5 0.8

Grammarly
(FCE & Wiki)

0.8 0.0005 0.5 0.8

CoNLL’14 0.01 0.00005 1 0.7
E2E NLG 0.7 0.0025 0.5 0.8
ParaBank 0.4 0.0005 0.5 0.8

Table 9: Tuned Hyperparameters of Model-based algo-
rithms when used with the Bleurt Metric
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Figure 5: Variation in annotation complexity with Mix-
ing probability in Random Mixing with Bleurt on the
left and with BALD threshold in Uncertainty-aware Se-
lection (BALD) with Bleurt on the right

ity decreases, i.e., with a greater amount of feed-
back received from Bleurt, the number of required
human annotations is lower. However, as shown in
figure 6, we observe the opposite trend when we
use metrics such as BLEU, which are highly inac-
curate. In these cases, we require a greater number
of human annotations to compensate for the highly
erroneous feedback received from the evaluation
metric. Therefore, the optimal mixing probabil-
ity pm in such cases is close to 0 i.e. equivalent
to the model-free case. For moderately accurate
metrics such as Laser, we observed the optimal pm
was close to 0.4 to 0.6. The key insight from these
observations is that the higher the accuracy of the
metric, the higher amount of feedback can be ob-
tained from the metric to identify the top-ranked
system. In figure 7, we analyze how the annota-
tion complexity of UCB Elimination with Bleurt
varies with the optimistic Copeland threshold τcop
hyperparameter. We fixed α hyperparameter to 0.6.
We observed that UCB Elimination is much more
robust to τcop and a general value of τcop = 0.8
worked well across all datasets and metrics.

D.2 Best Practices in Choosing
Hyperparameters

The optimal approach to choose hyperparameters
is usually to tune them on a validation set. But, at

Figure 6: Prediction accuracy v/s number of human
annotations collected for Random Mixing with Bluert
and BLEU for different mixing probability pm on the
WMT 15 deu-eng dataset
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Figure 7: Annotation complexity of UCB Elimination
with Bleurt v/s the Copland threshold for α = 0.6

times, it may not be possible either because of com-
putational reasons or because a human-annotated
validation dataset may not be available. In such
cases, we provide a few heuristics based on our
previous analysis to choose hyperparameters in our
model-based algorithms:

1. Choose the mixing probability pm in Random
Mixing proportionately with the accuracy of
the metric. For example, we observed that for
metrics with sentence-level prediction accu-
racy greater than 70%, pm = 0.8 tend to work
well. For accuracy between 65% to 70%, pm
in the range of 0.5-0.7 worked well.

2. Once we choose a value of pm, we can find
an appropriate BALD threshold τBALD where
100×pm% of BALD scores are above τBALD

and 100×(1−pm)% of BALD score are below
τBALD. Choosing the BALD threshold this
way ensures that we can directly control the
desired amount of model-predicted feedback
given to the learner.

3. For UCB Elimination, we recommend using
the default values of α = 0.6 and τcop = 0.8,
which we found to work well across tasks and
metrics.
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Figure 9: Sentence-level prediction accuracy of direct
assessment metrics with the Linear, BTL, and BTL-
Logistic models averaged across the 7 WMT datasets

E Robustness to Delayed Feedback

In some instances, human annotations are obtained
from multiple crowdsourced annotators in parallel
to reduce the time taken for annotations. In such
cases, the learner is required to choose the system
pairs (s

(t)
1 , s

(t)
2 ) to give to some annotator i even

before we obtain the result w(t−1) of the previous
comparison from some other annotator j. In other
words, the learner may experience a delay d > 0
in feedback where at time t, the learner may only
have access to the comparison history up to time
t−d−1. As shown in figure 8, we observe that the
top-performing dueling bandit algorithms tend to
be robust to delays in feedback. We notice that the
variation in the annotation complexity of RMED
and RCS as measured by standard deviation is only
64.49 and 62.86, respectively.

F Additional Results

F.1 Effect of number of NLG systems

In figure 10, we compare the variations in annota-
tion complexity of Random Mixing (with Electra
metric) using uniform exploration and dueling ban-
dit algorithms. Similar to the model-free case dis-
cussed in section 6.4, the annotation complexity of
uniform exploration grows as O(k2) but the anno-
tation complexity only varies as O(k) for RMED,
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Figure 10: Annotation complexity of Random Mixing
using the Electra metric with uniform exploration and
dueling bandit algorithms as function of number of NLG
systems on the ParaBank dataset

RCS, and RUCB dueling bandit algorithms

F.2 Results of Dueling Bandit Algorithms
We report the annotation complexity of all 13 du-
eling bandit algorithms on 13 evaluation datasets
in table 10. In figure 11, we show the top-rank
prediction accuracy as a function of the number
of human annotations for various dueling bandit
algorithms on all the datasets, other than WMT 16
tur-eng, which is separately depicted in figure 2.

F.3 Performance of Evaluation Metrics
In table 11, we report the sentence-level accuracy
in predicting the comparison outcome for 10 direct
assessment metrics using three probability mod-
els along with the trained pairwise metric (Elec-
tra). We observe that there is little variation in
performance across the three probability models.
To further illustrate this, we plot the accuracy on
the WMT datasets in figure 9 and observe that the
performance is largely similar across Linear, BTL,
and BTL-logistic models.

F.4 Model-based Algorithms
In figure 12, we show the top-rank prediction accu-
racy as a function of the number of human anno-
tations for various model-based algorithms using
the Electra metric with RMED. We observe that
Random Mixing and Uncertainty-aware Selection
(BALD) algorithms have significantly higher pre-
diction accuracy than model-free RMED for any
given number of human annotations. Further, when
we use UCB Elimination with Uncertainty-aware
Selection, we observe the highest top-rank predic-
tion accuracy for any given number of annotations.
.



Algorithm
WMT 2016 WMT 2015 Grammarly CoNLL

’14 Task
E2E
NLG

Para-
Bank

TL;
DRtur-eng ron-eng cze-eng deu-eng fin-eng rus-eng deu-eng FCE Wiki

Uniform 19479 24647 10262 3032 2837 12265 17795 8115 34443 61369 65739 825211 5893
IF 117762 282142 135718 75014 101380 162536 261300 226625 364304 713522 718492 605825 70071
BTM 32010 17456 > 106 2249 2926 11108 8328 2778 > 106 > 106 2541 10175 2038
Seq-Elim. 10824 17514 5899 4440 16590 6881 17937 12851 48068 38554 41037 > 106 9046
PL 7011 18513 4774 4618 7859 17049 15215 8037 13156 5682 60031 > 106 3871
Knockout 3415 7889 4723 3444 5104 5809 5956 3134 3777 8055 7708 17418 4953
Sing. Elim. 4830 6000 5885 5340 6953 6465 6453 6000 9000 12940 15000 55900 9045
RUCB 3125 5697 3329 1636 1655 4536 6222 2732 5617 19024 10924 41149 1647
RCS 2442 3924 3370 1537 2662 3867 5296 1816 4606 12678 7263 34709 1903
RMED 2028 5113 1612 864 1707 1929 4047 2093 5647 9364 3753 24132 1162
SAVAGE 10289 18016 6639 2393 2675 12806 12115 5767 22959 39208 41493 255208 4733
CCB 7017 11267 5389 2884 4092 11548 10905 4386 10020 21392 16960 87138 2518
DTS 10089 9214 8618 4654 4850 13317 16473 4355 11530 18199 19940 170467 1354
DTS++ 7626 9483 5532 2729 6465 9394 14926 9284 17774 31562 15065 52606 6284

Table 10: Annotation complexity of 13 dueling bandit algorithms along with the uniform exploration algorithm on
13 datasets spanning 5 NLG tasks

Metrics
WMT

(Micro Average)
Grammarly

(Micro Average)
CoNLL-2014
Shared Task

E2E NLG
Challenge

ParaBank TLDR OpenAI

Linear BTL
BTL
Log.

Linear BTL
BTL
Log.

Linear BTL
BTL
Log.

Linear BTL
BTL
Log.

Linear BTL
BTL
Log.

Linear BTL
BTL
Log.

Chrf 62.6 62.0 62.6 75.7 75.3 75.9 78.4 78.3 78.4 47.4 48.8 48.3 66.1 66.1 66.1 34.2 35.4 35.4
Bleu-4 41.5 53.4 41.5 73.2 73.0 73.2 78.9 78.7 78.9 45.0 39.0 50.1 63.8 63.2 63.8 42.8 44.0 42.8
Rouge-L 60.7 60.0 60.7 73.5 73.6 73.6 78.0 78.0 78.0 44.6 43.8 50.2 64.3 64.3 64.3 43.3 43.3 43.3
Emb. Avg. 56.5 59.1 57.5 70.1 70.3 71.5 76.0 76.7 77.0 49.8 51.6 51.8 64.9 64.9 64.9 38.2 38.2 38.2
Greedy Match 59.5 59.8 59.9 68.1 68.4 68.2 77.7 77.4 77.7 46.5 48.8 48.9 64.7 64.7 64.5 43.1 43.1 43.1
Vector Extr 59.4 59.5 59.3 66.0 66.9 66.5 76.3 76.7 76.7 44.9 46.2 49.1 63.7 63.7 63.7 47.4 47.1 48.1
Bertscore 65.9 66.2 65.9 77.4 77.2 77.4 82.0 81.5 82.0 45.9 49.3 50.1 68.1 68.1 68.1 44.5 44.4 44.5
Laser 65.3 65.1 65.3 75.1 73.0 75.1 78.0 76.4 78.0 47.2 49.9 50.5 67.0 67.0 67.0 35.4 35.4 35.4
MoverScore 66.1 66.5 66.1 74.7 70.9 73.0 80.6 79.6 80.3 50.1 49.3 50.4 68.0 68.0 67.8 40.7 40.7 40.7
Bleurt 68.2 67.5 68.2 77.1 76.6 76.0 81.5 81.5 80.8 48.1 50.4 50.4 67.7 67.7 67.7 42.5 42.5 42.3
Electra 65.7 74.0 81.6 54.3 81.7 -

Table 11: Sentence-level accuracy of direct assessment metrics with linear, BTL, and BTL-logistic probability
models and our trained Electra metric in predicting the comparison outcome
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Figure 11: Top-rank prediction accuracy as a function of the number of human annotations for (model-free) Uniform
exploration and RUCB, RCS, and RMED dueling bandit algorithms on 12 NLG datasets
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Figure 12: Top-rank prediction accuracy as a function of the number of human annotations for various model-based
dueling bandit algorithms with RMED and Electra metric on 12 NLG datasets


